General information about sniping and our advanced analysis - supported on the Solana network
Introduction
In the evolving landscape of blockchain technology, ensuring transaction transparency and security is paramount. A prevalent tactic known as "sniping" enables some users to get a major advantage on a token launch. Recognizing the need to identify and mitigate such practices, Webacy has introduced a robust Sniper Detection feature for Solana.
What is Sniping?
Sniping refers to traders who attempt to buy large portions of a token's supply immediately after it is minted, often using automated tools or bots to gain an advantage. Traders that lack the sophistication of sniping can be put at a major disadvantage if a token is heavily sniped. There is also an additional financial risk when a major portion of a token is controlled by snipers, who may be solely involved for financial gain and could dump when the price is right. It can also be misused to manipulate token distribution or conceal malicious activities.
Why Snipe?
Since a token's financial gains are most opportunistic in the earliest moments of a launch, successful sniping enables a buyer to get a token when the price is extremely low.
How Webacy's Sniper Detection Works
Webacy's Sniper detection feature analyzes transaction patterns and trading activity in real-time to identify potential sniper activities. Our sniper detection analyzes time proximity to mint, buying patterns, purchase amounts, automated trading behavior, front-running, and more. The sniper detection feature also calculates a confidence score (0-100) that represents the likelihood of sniper activity based on these factors.
Considerations
While Webacy's Sniper Detection feature is designed to identify sniper activities on a token, it's important to note that not all detected snipes are indicative of malicious intent. For example, high-demand token launches may result in multiple unrelated wallets transacting within the same time slot. Therefore, it's crucial to analyze the context of the token and consider additional factors before drawing conclusions.
Also note that this feature has been released for Solana only. If you'd like to request this analysis on other chains, please get in touch.
////
Endpoint Specifics
Sniper analysis is currently only available through the Holder Analysis endpoint. Visit the Holder Analysis endpoint page for API limitations, details, and expectations.
Try these addresses!
EvSMwAQYT18skxseSZaooXV7RzNbTTVQFrYEux19pump
13fUms9P4BrP91N4U9sdNoJhCceamrQhZ6WtzW9Jpump
Example Data Return
Important Field
Many customers start by implementing the
bundled_percentage_supply_bought
field. This displays the percentage of the initially acquired supply was purchased in a bundled scheme.
"sniper_analysis": {
"sniper_addresses": [
"7EziKQAVfPTQFPjELg2jREHgYB6q3eZJkh2HdXWhPsLh",
"8UazMc3hG7BLtsWpcWUPh4XB78xYkVQWcfRT64xp3dD7"
],
"sniper_count": 2,
"sniper_total_percentage": 9.56,
"block_range_analysis": [
{
"block_hash": "DYiXPLTP7cvAf612Zw19vtpBNxxTdY7S5dJJBxGbRjxs",
"timestamp": "2025-04-03T06:39:03.000Z",
"buy_count": 1,
"block_number": 1,
"addresses": [
"J16iaWtJazWEcXByJuVe1eeAey3KeiwTD8S8Xpdzppjm"
],
"supply_percentage": 0.11
},
{
"block_hash": "36kajGL16hQRvzoa8nq9Rd5Ge618eA2Nb1DjCuGXmcHV",
"timestamp": "2025-04-03T06:39:05.000Z",
"buy_count": 1,
"block_number": 2,
"addresses": [
"BzTi7n6T9EEseqcswMmLQfD9McXP7fUAbJGgWddTPfBz"
],
"supply_percentage": 0.03
},
{
"block_hash": "6T2yYxr1Awq4tHddm2WmuMGy2WhA6uXKoM3P74L92FfP",
"timestamp": "2025-04-03T06:39:05.000Z",
"buy_count": 1,
"block_number": 3,
"addresses": [
"9xBPRyX16em6fNuhts577rPUZe13KN5Enyfs8gH4bWaP"
],
"supply_percentage": 0.02
}
],
"time_since_mint_analysis": [
{
"time_range_seconds": 10,
"buy_count": 4,
"addresses": [
"J16iaWtJazWEcXByJuVe1eeAey3KeiwTD8S8Xpdzppjm",
"BzTi7n6T9EEseqcswMmLQfD9McXP7fUAbJGgWddTPfBz",
"9xBPRyX16em6fNuhts577rPUZe13KN5Enyfs8gH4bWaP",
"77X6y9iFBumCEbQRMN3RBGfRPfi6cn1sNQ4L836wmarm"
],
"supply_percentage": 0.18
},
{
"time_range_seconds": 30,
"buy_count": 6,
"addresses": [
"J16iaWtJazWEcXByJuVe1eeAey3KeiwTD8S8Xpdzppjm",
"BzTi7n6T9EEseqcswMmLQfD9McXP7fUAbJGgWddTPfBz",
"9xBPRyX16em6fNuhts577rPUZe13KN5Enyfs8gH4bWaP",
"77X6y9iFBumCEbQRMN3RBGfRPfi6cn1sNQ4L836wmarm",
"7EziKQAVfPTQFPjELg2jREHgYB6q3eZJkh2HdXWhPsLh",
"8UazMc3hG7BLtsWpcWUPh4XB78xYkVQWcfRT64xp3dD7"
],
"supply_percentage": 9.74
},
{
"time_range_seconds": 60,
"buy_count": 8,
"addresses": [
"J16iaWtJazWEcXByJuVe1eeAey3KeiwTD8S8Xpdzppjm",
"BzTi7n6T9EEseqcswMmLQfD9McXP7fUAbJGgWddTPfBz",
"9xBPRyX16em6fNuhts577rPUZe13KN5Enyfs8gH4bWaP",
"77X6y9iFBumCEbQRMN3RBGfRPfi6cn1sNQ4L836wmarm",
"7EziKQAVfPTQFPjELg2jREHgYB6q3eZJkh2HdXWhPsLh",
"8UazMc3hG7BLtsWpcWUPh4XB78xYkVQWcfRT64xp3dD7",
"ETDEBCgUuK111MgSkhKFBx8Sp7ZFDWW3eSmKofuuPiCj",
"H16HsHZgtLR3rgFtPd3XJo2cp9z9GRPXUYmmW76mATTb"
],
"supply_percentage": 10
},
{
"time_range_seconds": 300,
"buy_count": 49,
"addresses": [
"J16iaWtJazWEcXByJuVe1eeAey3KeiwTD8S8Xpdzppjm",
"BzTi7n6T9EEseqcswMmLQfD9McXP7fUAbJGgWddTPfBz",
"9xBPRyX16em6fNuhts577rPUZe13KN5Enyfs8gH4bWaP",
"77X6y9iFBumCEbQRMN3RBGfRPfi6cn1sNQ4L836wmarm",
"7EziKQAVfPTQFPjELg2jREHgYB6q3eZJkh2HdXWhPsLh",
"8UazMc3hG7BLtsWpcWUPh4XB78xYkVQWcfRT64xp3dD7",
"ETDEBCgUuK111MgSkhKFBx8Sp7ZFDWW3eSmKofuuPiCj",
"H16HsHZgtLR3rgFtPd3XJo2cp9z9GRPXUYmmW76mATTb",
"J5cNqWPo6cv8BfPdd8tTpu2gwAVnrHnaAxXoYc5A7ncG",
"5MQYH9mLMrvUDczsp2FGti8xv2GBZaWeJQQHoQoWmJSj",
"vNkGP6fLgfQ9uRzpK6NtcZ8RnVnBwJFNUqP8KJZ94QW",
"pYtYY2JitBETru3vhWjAn1SWjWoZkbBgiq7GVh9ibcV",
"2i8QndpSRDJUvJjNM9wttvbEKHPf6tEGgsXmNxVc5saY",
"6EPbr4awvtDspFp274bGjXf68UjH1eydhWMcRisMxiPm",
"AGiSdEqhifFFEvtijtUBQneF1SpUwukFKFu81ckmfpja",
"AGqLpggf2yUXQ7UA3kngJS4o6qFywASJ9mn3HUsCmoct",
"AGdmgSvVoC3h8VoSsuAX6DcEB3LJmssSsLLc7cjhGzuT",
"2QpQqQExhsTCaXmFUQzH13jcvRd1rkTrk9G4LPijaHFj",
"GChjA9fKjL81yDkt34BcfCjkksDg6sGQcz4MJw4KiWqo",
"33GtNAQzmdq4jELpHxXYqW3vDy7fux89zevVU4hP7BTX",
"GtcHd1edpYmwB3j52BbZHg6uwYxP2ZKcSfVsN1v6f1b6",
"HU4ZgrZoVa2HxDmQhszcyQJj9DejibHMXjAriZjagso4",
"CRcAZ6vgNYBJUsoZQrd3TLbQVguSLiCcf5pASSs36UcL",
"CdEVwh1kFBfpYrPTC4EtWY4X9ZRArTo61wZ6r1SWM2Dp",
"PEaaf8rJJTaVQKwxNKSw8SYWBMGhnpNAubKJVtHHgbP",
"AWNJ5HuNUaQX8whB84egGWWmtPE59G1WfCbvdpDUGVfp",
"CpHV6Ux4PR3X571GWysJqfEZ54YHriKdLan1wQbQGYBm",
"74CfQdUFGvhRUQ5GR4dHpmi4NXqMhwLs3KuCUHMKyCXC",
"C1twpWx3vBpWDrXXvFbLd4zFCALRfhFdKrebNjeza7p3",
"Fr78FexaX9XkszsUUHJFFKSQgpi7m1t9X5uwXQyJRoS6",
"FLAKeimo8zqdvVoJJhaxJu9yAMB3cgYbY8raTgHQ9XVU",
"5H2oQhBqqXXdTc7u7usR1woL5XJ1zGuiCJqQe3NKAyAT",
"8mY6HVDFNdZHV9gPAQESTGDAFpqq8qcwt6D25Kvd4XKn",
"BmDDuGCBWgPH3muuzvyvSDwzBdCZ2AjTnKVFH8fXSzzJ",
"4FuhtiBu8rKq31CRKdwwBcSTqoPxwwcEp1274hP7AUoW",
"DXdyKDmdefHAb9D45A2EWTs9AiaCCJKWmE9AWi78gKyM",
"AGyuzEzA6Fd9AMRW7DU7jy3CePwM2yLLiRh4usivEGyE",
"62rxA3WZSTBEFb5dM2rCBaQzyYKuMvLJfPVWtex1LcPT",
"",
"TDJzAcsV8Ck2fEbALRb8efP7uA2oxy96XjmVV7wnio3",
"EEEEEc4xfLKqnRBRq4wsQVJu9HaN6TuVonx54RGy4WNN",
"HR574nkdga5juXFeTtu2Rm9ao8iQs6TXCsL9DKZiTHWC",
"9UDUGmptuY2bvyEs51CFkoRCMBEhPj7iSgzoPjzH1D4R",
"EPp5ovWE593zfyrXVv7X2MHQAvGa22wovzfLUFRt9pno",
"5F9EQBrQHcDvFPVSvx5utdAVHpeu9iQoJ2Srgui5rSZD",
"2CHdAE9p4u2ZWcsp1WyhE8VYjPWTmuTPq89aEXHRUFm9",
"waTeRoKz7KrhSMMBqEmdgSxQejKVSU4msEXUrwMNBF9",
"CC1Vo9y9183zoiyckDwmwwNYhTB8vfyP7UGjZUR1wX4m"
],
"supply_percentage": 60.72
},
{
"time_range_seconds": 600,
"buy_count": 60,
"addresses": [
"J16iaWtJazWEcXByJuVe1eeAey3KeiwTD8S8Xpdzppjm",
"BzTi7n6T9EEseqcswMmLQfD9McXP7fUAbJGgWddTPfBz",
"9xBPRyX16em6fNuhts577rPUZe13KN5Enyfs8gH4bWaP",
"77X6y9iFBumCEbQRMN3RBGfRPfi6cn1sNQ4L836wmarm",
"7EziKQAVfPTQFPjELg2jREHgYB6q3eZJkh2HdXWhPsLh",
"8UazMc3hG7BLtsWpcWUPh4XB78xYkVQWcfRT64xp3dD7",
"ETDEBCgUuK111MgSkhKFBx8Sp7ZFDWW3eSmKofuuPiCj",
"H16HsHZgtLR3rgFtPd3XJo2cp9z9GRPXUYmmW76mATTb",
"J5cNqWPo6cv8BfPdd8tTpu2gwAVnrHnaAxXoYc5A7ncG",
"5MQYH9mLMrvUDczsp2FGti8xv2GBZaWeJQQHoQoWmJSj",
"vNkGP6fLgfQ9uRzpK6NtcZ8RnVnBwJFNUqP8KJZ94QW",
"pYtYY2JitBETru3vhWjAn1SWjWoZkbBgiq7GVh9ibcV",
"2i8QndpSRDJUvJjNM9wttvbEKHPf6tEGgsXmNxVc5saY",
"6EPbr4awvtDspFp274bGjXf68UjH1eydhWMcRisMxiPm",
"AGiSdEqhifFFEvtijtUBQneF1SpUwukFKFu81ckmfpja",
"AGqLpggf2yUXQ7UA3kngJS4o6qFywASJ9mn3HUsCmoct",
"AGdmgSvVoC3h8VoSsuAX6DcEB3LJmssSsLLc7cjhGzuT",
"2QpQqQExhsTCaXmFUQzH13jcvRd1rkTrk9G4LPijaHFj",
"GChjA9fKjL81yDkt34BcfCjkksDg6sGQcz4MJw4KiWqo",
"33GtNAQzmdq4jELpHxXYqW3vDy7fux89zevVU4hP7BTX",
"GtcHd1edpYmwB3j52BbZHg6uwYxP2ZKcSfVsN1v6f1b6",
"HU4ZgrZoVa2HxDmQhszcyQJj9DejibHMXjAriZjagso4",
"CRcAZ6vgNYBJUsoZQrd3TLbQVguSLiCcf5pASSs36UcL",
"CdEVwh1kFBfpYrPTC4EtWY4X9ZRArTo61wZ6r1SWM2Dp",
"PEaaf8rJJTaVQKwxNKSw8SYWBMGhnpNAubKJVtHHgbP",
"AWNJ5HuNUaQX8whB84egGWWmtPE59G1WfCbvdpDUGVfp",
"CpHV6Ux4PR3X571GWysJqfEZ54YHriKdLan1wQbQGYBm",
"74CfQdUFGvhRUQ5GR4dHpmi4NXqMhwLs3KuCUHMKyCXC",
"C1twpWx3vBpWDrXXvFbLd4zFCALRfhFdKrebNjeza7p3",
"Fr78FexaX9XkszsUUHJFFKSQgpi7m1t9X5uwXQyJRoS6",
"FLAKeimo8zqdvVoJJhaxJu9yAMB3cgYbY8raTgHQ9XVU",
"5H2oQhBqqXXdTc7u7usR1woL5XJ1zGuiCJqQe3NKAyAT",
"8mY6HVDFNdZHV9gPAQESTGDAFpqq8qcwt6D25Kvd4XKn",
"BmDDuGCBWgPH3muuzvyvSDwzBdCZ2AjTnKVFH8fXSzzJ",
"4FuhtiBu8rKq31CRKdwwBcSTqoPxwwcEp1274hP7AUoW",
"DXdyKDmdefHAb9D45A2EWTs9AiaCCJKWmE9AWi78gKyM",
"AGyuzEzA6Fd9AMRW7DU7jy3CePwM2yLLiRh4usivEGyE",
"62rxA3WZSTBEFb5dM2rCBaQzyYKuMvLJfPVWtex1LcPT",
"",
"TDJzAcsV8Ck2fEbALRb8efP7uA2oxy96XjmVV7wnio3",
"EEEEEc4xfLKqnRBRq4wsQVJu9HaN6TuVonx54RGy4WNN",
"HR574nkdga5juXFeTtu2Rm9ao8iQs6TXCsL9DKZiTHWC",
"9UDUGmptuY2bvyEs51CFkoRCMBEhPj7iSgzoPjzH1D4R",
"EPp5ovWE593zfyrXVv7X2MHQAvGa22wovzfLUFRt9pno",
"5F9EQBrQHcDvFPVSvx5utdAVHpeu9iQoJ2Srgui5rSZD",
"2CHdAE9p4u2ZWcsp1WyhE8VYjPWTmuTPq89aEXHRUFm9",
"waTeRoKz7KrhSMMBqEmdgSxQejKVSU4msEXUrwMNBF9",
"CC1Vo9y9183zoiyckDwmwwNYhTB8vfyP7UGjZUR1wX4m",
"DkkyAa5wAUwwSQTRrcWZZW8nPaknqCkC7SHSrKnLksnp",
"4wumkPWPkK3hqGmnQdjpk5Abcc91dsUsofoi99KzGEe6",
"GgYS4Y2ppkVuqp32QjVSDGsoZLjTWmHLPrFTYJ49Y7Zf",
"GSwomz9JBhL5jZmmFjJoT3YQEgbV99JMXgWFvxmCyhfp",
"4Fx3b67vYhkx4xLjTSU5KefMBLwcBMpSGEJcwxyvfz9r",
"125Pu2xKqNHbDdiBd1Jo4jDco8ygfawhs9Ngzjyyqx2",
"HBzKhJsow7nDMDx1THY7cQMKmNkjFyZyqWMVVRb4Ra5Z",
"J9vVF9cYFRf37FDSPzCFvtUyrg1kVgCRDhrQZUCoNQXP",
"4wJRN1Kqk24bvwNBJ4siq2VG2c78x4N9pLBLM1jMcuZN"
],
"supply_percentage": 69.89
}
],
"average_time_since_mint": 198.1,
"median_time_since_mint": 227.5,
"potential_frontrunning_detected": false,
"sniper_confidence_score": 9
Understanding Fields
The SniperAnalysisResult is a comprehensive analysis output with the following fields:
Field | Description | Example Value |
---|---|---|
sniper_addresses | Array of wallet addresses identified as potential snipers | ["ARD9GAKA6LAz...", "o7RY6P2vQMu..."] |
sniper_count | Number of identified sniper addresses | 5 |
sniper_total_percentage | Total percentage of token supply acquired by snipers within the analyzed time window | 77.18% |
block_range_analysis | Block-by-block breakdown of trading activity | See below |
time_since_mint_analysis | Trading activity analyzed by time intervals | See below |
average_time_since_mint | Average time (seconds) of buys after mint | 224.36 seconds |
median_time_since_mint | Median time (seconds) of buys after mint | 150 seconds |
potential_frontrunning_detected | Whether potential frontrunning was identified | true |
sniper_confidence_score | Overall score (0-100) indicating confidence in sniper activity | 46 |
risk_assessment | Overall risk assessment ("low", "medium", or "high") | "medium" |
Block Range Analysis
This provides insights into buying activity by block:
{
"block_hash": "917TtwH3X6NLwAtWsWLPejRBw9b7W1cD1NadihRNYZZY",
"timestamp": "2025-03-21T13:10:22.000Z",
"buy_count": 3,
"block_number": 1,
"addresses": ["ARD9GAKA6LAzufwqZ3BTKcnJmaeNyGHp3n7UU4eiJ3mS",
"o7RY6P2vQMuGSu1TrLM81weuzgDjaCRTXYRaXJwWcvc",
"29eiZNQKgbTNMMx5MtffRiVnTSPAe5GDHGTyr1HqyR87"],
"supply_percentage": 71.56
}
This shows that in the first block after mint, 3 buyers acquired 71.56% of the token supply, a strong indicator of sniper activity.
Time Since Mint Analysis
This analyzes trading activity by time windows after mint:
{
"time_range_seconds": 10,
"buy_count": 16,
"addresses": ["ARD9GAKA6LAzufwqZ3BTKcnJmaeNyGHp3n7UU4eiJ3mS", "o7RY6P2vQMuGSu1TrLM81weuzgDjaCRTXYRaXJwWcvc", ...],
"supply_percentage": 72.81
}
This example shows that within 10 seconds of mint, 16 buyers acquired 72.81% of the supply.
Confidence Score Calculation
The confidence score is calculated based on multiple factors:
- First block buying activity: Higher percentage of buys in first block = higher score
- Time proximity to mint: Faster buys = higher score
- Supply percentage: Larger percentage acquired = higher score
- Front-running indicators: Adds 15 points if detected
- Ratio of snipers to total buyers: Higher ratio = higher score
- Bot-like patterns: Adds points based on percentage of buyers showing bot activity
The final score determines the risk assessment:
Score | Value |
---|---|
Low | x <= 40 |
Medium | 40 < x <= 75 |
High | x > 75 OR x >=60 and token age < 12 hours |